Application of Improved SOM Neural Network in Fault Diagnosis of Electric Power Dispatching
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A fault diagnosis model is proposed by using improved SOM neural network for the purpose of improving fault and safety monitoring, especially when it lacks accurate positioning and correlation analysis in power dispatching automation system. Firstly, based on the analysis of the historical data of the dispatching system, the feature vector of the fault is extracted and the learning sample is established. And then the connection with input and output for the subsequent test is trained for verification through the algorithm. Finally, the experiment which tests the data and verifies the effectiveness of its fault diagnosis is in the network with the inherent mapping of the data. The final results show that this model is an effective artificial intelligence diagnosis method for different types of fault recognition and diagnosis.

    Reference
    Related
    Cited by
Get Citation

刘兆炜,王汉军,李丹,周心圆.改进SOM神经网络在电力调度故障诊断中的应用.计算机系统应用,2018,27(3):179-185

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 04,2017
  • Revised:July 20,2017
  • Adopted:
  • Online: February 11,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063