Overview on Models and Applications of Support Vector Machine
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    According to the development of support vector machine, this study reviews many literatures based on applications in different domains, such as text classification, human body detection, vehicle traffic recognition, medical examination, and so on. Meanwhile, the theory and development of support vector machine are both expounded in detail from the principle of kernel function and its multiple classifications based on actual dataset. The potential improvements of support vector machine technology are infinite. We look forward to see their development prospects.

    Reference
    1 Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3):273-297.
    2 杨文敏, 李保利. 自然语言文本中不确定性信息的自动识别. 计算机系统应用, 2015, 24(2):155-158.
    3 张虎, 谭红叶, 钱宇华, 等. 基于集成学习的中文文本欺骗检测研究. 计算机研究与发展, 2015, 52(5):1005-1013.[DOI:10.7544/issn1000-1239.2015.20131552]
    4 Ryu J, Koo HI, Cho NI. Word segmentation method for handwritten documents based on structured learning. IEEE Signal Processing Letters, 2015, 22(8):1161-1165.[DOI:10.1109/LSP.2015.2389852]
    5 Elleuch M, Mokni R, Kherallah M. Offline Arabic handwritten recognition system with dropout applied in deep networks based-SVMs. Proceedings of 2016 International Joint Conference on Neural Networks (IJCNN). Vancouver, BC, Canada. 2016. 3241-3248.
    6 Kessentini Y, Paquet T. Keyword spotting in handwritten documents based on a generic text line HMM and a SVM verification. Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR). Tunis. 2015. 41-45.
    7 Lakshmi G, Panicker JR, Meera M. Named entity recognition in Malayalam using fuzzy support vector machine. Proceedings of 2016 International Conference on Information Science (ICIS). Kochi, Japan. 2016. 201-206.
    8 Zhu H, Liu XX, Lu RX, et al. Efficient and privacy-preserving online medical prediagnosis framework using nonlinear SVM. IEEE Journal of Biomedical and Health Informatics, 2017, 21(3):838-850.[DOI:10.1109/JBHI.2016.2548248]
    9 Cheng WC, Jhan DM. Triaxial accelerometer-based fall detection method using a self-constructing cascade-AdaBoost-SVM classifier. IEEE Journal of Biomedical and Health Informatics, 2013, 17(2):411-419.[DOI:10.1109/JBHI.2012.2237034]
    10 徐胜舟, 裴承丹. 基于遗传算法和支持向量机的乳腺肿块识别. 计算机仿真, 2015, 32(2):432-435.
    11 Harmsen M, Fischer B, Schramm H, et al. Support vector machine classification based on correlation prototypes applied to bone age assessment. IEEE Journal of Biomedical and Health Informatics, 2013, 17(1):190-197.[DOI:10.1109/TITB.2012.2228211]
    12 Bron EE, Smits M, Niessen WJ, et al. Feature selection based on the SVM weight vector for classification of dementia. IEEE Journal of Biomedical and Health Informatics, 2015, 19(5):1617-1626.[DOI:10.1109/JBHI.2015.2432832]
    13 Jie NF, Zhu MH, Ma XY, et al. Discriminating bipolar disorder from major depression based on SVM-FoBa:efficient feature selection with multimodal brain imaging data. IEEE Transactions on Autonomous Mental Development, 2015, 7(4):320-331.[DOI:10.1109/TAMD.2015.2440298]
    14 刘小建. 基于多特征提取和SVM分类的手势识别. 计算机工程与设计, 2017, 38(4):953-958.
    15 李昆仑, 张亚欣, 刘利利, 等. 基于改进PCA和支持向量机的掌纹识别. 计算机科学, 2015, 42(S2):146-150.
    16 Tyagi D, Verma A, Sharma S. An improved method for face recognition using local ternary pattern with GA and SVM classifier. Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I). Noida, India. 2016. 421-426.
    17 Bagla K, Bhushan B. A novel approach for face recognition using hybrid SIFT-SVM. Proceedings of 2016 IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). Delhi, India. 2016. 1-6.
    18 黄忠, 胡敏, 刘娟. 基于AAM-SIFT特征描述的两级SVM人脸表情识别. 计算机工程与应用, 2016, 52(3):178-183.
    19 Adeyanju IA, Omidiora EO, Oyedokun OF. Performance evaluation of different support vector machine kernels for face emotion recognition. Proceedings of 2015 SAI Intelligent Systems Conference (IntelliSys). London, UK. 2015. 804-806.
    20 Yao M, Zhu CM. SVM and adaboost-based classifiers with fast PCA for face reocognition. Proceedings of 2016 IEEE International Conference on Consumer Electronics-China (ICCE-China). Guangzhou, China. 2016. 1-5.
    21 Bashbaghi S, Granger E, Sabourin R, et al. Ensembles of exemplar-SVMs for video face recognition from a single sample per person. Proceedings of the 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Karlsruhe, Germany. 2015. 1-6.
    22 Hadchum P, Wongthanavasu S. Facial age estimation using a hybrid of SVM and fuzzy logic. Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Hua Hin, Thailand. 2015. 1-6.
    23 Omara I, Wu XH, Zhang HZ, et al. Learning pairwise SVM on deep features for ear recognition. Proceedings of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). Wuhan, China. 2017. 341-346.
    24 孙炜, 薛敏, 孙天宇, 等. 基于支持向量机优化的行人跟踪学习检测方法? 湖南大学学报(自然科学版), 2016, 43(10):102-109.[DOI:10.3969/j.issn.1674-2974.2016.10.013]
    25 张笑, 张明. 基于SVM的偏斜车牌识别. 现代计算机, 2016, (8):64-68.
    26 王锐, 杨宏业, 张海鹏. 基于浮动公交车的SVM实时交通状态识别研究. 内蒙古工业大学学报, 2016, 35(1):18-23.
    27 张华伟, 左旭艳, 潘昊. 基于混合核学习支持向量机的主减速器故障诊断. 计算机应用与软件, 2017, 34(5):91-98.
    28 胡庆新, 焦伟, 顾爱华. 多特征融合和交叉核SVM的车辆检测方法. 合肥工业大学学报(自然科学版), 2016, 39(1):84-89.
    29 Wu YF, Yang XH, Plaza A, et al. Approximate computing of remotely sensed data:SVM hyperspectral image classification as a case study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12):5806-5818.[DOI:10.1109/JSTARS.2016.2539282]
    30 冯逍, 肖鹏峰, 李琦, 等. 三维Gabor滤波器与支持向量机的高光谱遥感图像分类. 光谱学与光谱分析, 2014, 34(8):2218-2224.
    31 Zhang ZM, Torr PHS. Object proposal generation using two-stage cascade SVMs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):102-115.[DOI:10.1109/TPAMI.2015.2430348]
    32 陈欣欣, 郭辰彤, 张初, 等. 高光谱成像技术的库尔勒梨早期损伤可视化检测研究. 光谱学与光谱分析, 2017, 37(1):150-155.
    33 Bo CJ, Lu HC, Wang D. Hyperspectral image classification via JCR and SVM models with decision fusion. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2):177-181.[DOI:10.1109/LGRS.2015.2504449]
    34 林荫. 基于KNN-SVM的垃圾邮件过滤模型. 现代电子技术, 2016, 39(23):90-92, 97.
    35 苑玮琦. 基于形态学与支持向量机的虹膜坑洞纹理检测. 仪器仪表学报, 2017, 38(3):664-671.
    36 Shi YZ, Chung FL, Wang ST. An improved TA-SVM method without matrix inversion and its fast implementation for nonstationary datasets. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2005-2018.[DOI:10.1109/TNNLS.2014.2359954]
    37 Wu JX, Yang H. Linear regression-based efficient SVM learning for large-scale classification. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10):2357-2369.[DOI:10.1109/TNNLS.2014.2382123]
    38 Kosaka N, Ohashi G. Vision-based nighttime vehicle detection using CenSurE and SVM. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2599-2608.[DOI:10.1109/TITS.2015.2413971]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘方园,王水花,张煜东.支持向量机模型与应用综述.计算机系统应用,2018,27(4):1-9

Copy
Share
Article Metrics
  • Abstract:3097
  • PDF: 13584
  • HTML: 6517
  • Cited by: 0
History
  • Received:July 10,2017
  • Revised:July 24,2017
  • Online: April 03,2018
Article QR Code
You are the first1025913Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063