Unsupervised Feature Selection Method Based on Improved ReliefF
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A novel method of unsupervised feature selection UFS-IR based on improved ReliefF is proposed to solve the problem of lack of category information in feature selection. As the ReliefF algorithm has a small sampling probability of small class samples, it cannot delete the defects of redundant features. This method uses DBSCAN clustering algorithm to guide the classification. By improving the sampling strategy, it uses the adjusted cosine similarity to measure the correlation between features as a de-redundancy credential. Experiments show that UFS-IR can effectively reduce the data dimension while ensuring the maximum correlation redundancy of the feature subset, and with good performance.

    Reference
    Related
    Cited by
Get Citation

丁雪梅,王汉军,王炤光,周心圆.基于改进ReliefF的无监督特征选择方法.计算机系统应用,2018,27(3):149-155

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 14,2017
  • Revised:June 30,2017
  • Adopted:
  • Online: February 11,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063