Recommendation Algorithms Based on Enhanced Similarity and Implicit Trust
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Considering the sparsity of traditional collaborative filtering recommendation algorithms in electronic commerce systems, a new collaborative filtering algorithms based on enhanced similarity and implicit trust is presented. Firstly, a new method based on JMSD and user's preference to compute the similarity measure is presented. Secondly, a method to compute the direct trust fused with the interactive experience is proposed. Then, a method to compute the implicit trust based on direct trust and trust propagation is presented. Finally, this paper presents a model to compute the rating predictions based on the enhanced similarity and implicit trust. The experimental results in Movielens and Epinions show that the new algorithm improves recommendation quality in MAE and coverage.

    Reference
    Related
    Cited by
Get Citation

郑鹏,王应明.基于增强相似度和隐含信任的推荐算法.计算机系统应用,2018,27(3):118-124

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 05,2017
  • Revised:June 19,2017
  • Adopted:
  • Online: February 11,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063