Indoor Positioning of Wireless Network Based on Improved Neural Network
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [13]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Interfered by a variety of factors, indoor positioning has been a research hotspot in wireless network. To improve the indoor positioning effect, aiming at the problem that the neural network has in indoor positioning accuracy of the wireless network, this paper designs a wireless network based on artificial neural networks. The first indoor wireless network collects relevant information, extracts indoor positioning data, and then uses neural network for data learning. It sets up a wireless network positioning model to improve the defects of the neural network. Finally, the simulation is carried out on the Matlab platform. The results show that the improved neural network overcomes the limitations of the traditional indoor localization methods, and achieves higher indoor localization accuracy of wireless networks. Moreover, the indoor localization efficiency has also been improved significantly.

    Reference
    [1] Gu YY, Lo A, Niemegeers I. A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials, 2009, 11(1): 13-32.
    [2] Li M, Liu YH. Rendered path: Range-free localization in anisotropic sensor networks with Holes. IEEE/ACM Transactions on Networking, 2010, 18(1): 320-332. [DOI:10.1109/TNET.2009.2024940]
    [3] Kushki A, Plataniotis KN, Venetsanopoulos AN. Intelligent dynamic radio tracking in indoor wireless local area networks. IEEE Transactions on Mobile Computing, 2010, 9(3): 405-419. [DOI:10.1109/TMC.2009.141]
    [4] 田勇, 唐祯安, 喻言. 室内无线传感器网络信道传输模型及统计分析. 控制与决策, 2014, 29(6): 1135-1138.
    [5] 倪巍, 王宗欣. 基于接收信号强度测量的室内定位算法. 复旦学报(自然科学版), 2004, 43(1): 72-76.
    [6] 夏俊, 俞晖, 罗汉文. 基于多传感器数据融合的室内定位算法. 上海师范大学学报(自然科学版), 2015, 44(1): 65-71.
    [7] 张明华, 张申生, 曹健. 无线局域网中基于信号强度的室内定位. 计算机科学, 2007, 34(6): 68-71, 75.
    [8] 刘召伟, 徐凤燕, 王宗欣. 基于参数拟合的室内多用户定位算法. 电波科学学报, 2008, 23(6): 1090-1094, 1105.
    [9] 徐凤燕, 石鹏, 王宗欣. 基于参数拟合的距离-损耗模型室内定位算法. 电路与系统学报, 2007, 12(1): 1-5.
    [10] 林以明, 罗海勇, 李锦涛, 等. 基于动态Radio Map的粒子滤波室内无线定位算法. 计算机研究与发展, 2011, 48(1): 139-146.
    [11] 张勇, 黄杰, 徐科宇. 基于PCA-LSSVR算法的WLAN室内定位方法. 仪器仪表学报, 2015, 36(2): 408-414.
    [12] 张会清, 石晓伟, 邓贵华, 等. 基于BP神经网络和泰勒级数的室内定位算法研究. 电子学报, 2012, 40(9): 1876-1879.
    [13] 李瑛, 胡志刚. 一种基于BP神经网络的室内定位模型. 计算机技术与自动化, 2007, 26(2): 77-80.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

岳小冰,郝倩.改进神经网络的无线网络室内定位.计算机系统应用,2018,27(2):257-260

Copy
Share
Article Metrics
  • Abstract:1560
  • PDF: 2108
  • HTML: 1274
  • Cited by: 0
History
  • Received:March 28,2017
  • Revised:April 20,2017
  • Online: February 05,2018
Article QR Code
You are the first1015014Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063