Application of Random Forest Algorithm in Medical Sales Forecast Based on Adaboost
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [10]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A sales forecasting method based on random forest algorithm and Adaboost method is proposed. Firstly, by analyzing the characteristics of the sales factors, the characteristics and dimensions of the training data are determined. Then, the feature data is trained by the random forest algorithm based on Adaboost, and the steps of the prediction algorithm are presented. Finally, the experimental results show that this method can greatly enhance the performance of random forest algorithm, and has a high prediction accuracy, as well as a good performance of generalization.

    Reference
    [1] 陈蓉. 基于BP神经网络的零售产品销量预测方法. 经营管理者, 2015, (4): 10-11.
    [2] 王建伟. 基于商品聚类的电商销量预测. 计算机系统应用, 2016, 25(10): 162-168. [DOI:10.15888/j.cnki.csa.005423]
    [3] 曹莹, 苗启广, 刘家辰, 等. AdaBoost算法研究进展与展望. 自动化学报, 2013, 39(6): 745-758.
    [4] 丁君美, 刘贵全, 李慧. 改进随机森林算法在电信业客户流失预测中的应用. 模式识别与人工智能, 2015, 28(11): 1041-1049.
    [5] 李翔, 朱全银. Adaboost算法改进BP神经网络预测研究. 计算机工程与科学, 2013, 35(8): 96-102.
    [6] 张禹, 马驷良, 张忠波, 等. 基于Adaboost算法与神经网络的快速虹膜检测与定位算法. 吉林大学学报(理学版), 2006, 44(2): 233-236.
    [7] 李翔, 朱全银. 基于Adaboost算法和BP神经网络的税收预测. 计算机应用, 2012, 32(12): 3558-3560, 3568.
    [8] 李威威, 李春青, 聂敬云, 等. 膜生物反应器膜污染的随机森林预测模型. 计算机应用, 2015, 35(SI): 135-137.
    [9] Richert W, Coelho LP. Python语言构建机器学习系统. 南京: 东南大学出版社, 2016.
    [10] Hetland ML. Python基础教程. 2版. 司维, 曾军崴, 谭颖华, 译. 北京: 人民邮电出版社, 2014.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

常晓花,熊翱.基于Adaboost的随机森林算法在医疗销售预测中的应用.计算机系统应用,2018,27(2):202-206

Copy
Share
Article Metrics
  • Abstract:1789
  • PDF: 3193
  • HTML: 1640
  • Cited by: 0
History
  • Received:May 13,2017
  • Revised:May 31,2017
  • Online: February 05,2018
Article QR Code
You are the first1015014Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063