Text Sentiment Classification Based on CSLSTM Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Text sentiment classification is a popular subject of natural language processing and the crucial problem in product evaluation. Based on semantic relationship of word vector and sentence vector and the impact of user information, product information to text sentiment classification, Cosine Similarity Long-Short Term (CSLSTM) network is proposed. CSLSTM considers attention mechanisms of user information and product information in various semantic levels. And it involves a effective initialization method in hidden level weights of word-level attention matrix according to similarity of word vector and sentence vector. The competitive results are derived from three sentiment classification datasets, Yelp13, Yelp 14, and IMDB.

    Reference
    Related
    Cited by
Get Citation

庄丽榕,叶东毅.基于CSLSTM网络的文本情感分类.计算机系统应用,2018,27(2):230-235

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 18,2017
  • Revised:June 05,2017
  • Adopted:
  • Online: February 05,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063