Similarity of Infrared and Visible Fusion Quality Index Based on Cluster Analysis
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to study the correlation between infrared and visible image fusion quality evaluation indexes, the similarity of the fusion quality evaluation indexes of infrared and visible images based on cluster analysis is put forward. In this paper, eleven evaluation indexes are listed, and correlation matrix are respectively established by using Spearman rank correlation coefficient and grey correlation degree. Through the analysis of change rate of threshold, the optimal clustering threshold is selected and the evaluation index of the degree of similarity is given. In the experiment, 10 groups of commonly used infrared and visible fusion images are respectively evaluated by 11 evaluation indicators, and then 11 evaluation indicators are divided into 6 categories by cluster analysis method. The results can be used as the basis for selecting a reasonable objective evaluation index set.

    Reference
    [1] 张宝辉. 红外与可见光的图像融合系统及应用研究[博士学位论文]. 南京: 南京理工大学, 2013.
    [2] 夏明革, 何友, 黄晓东. 多传感器图像融合效果评价方法研究. 电光与控制, 2003, 10(2): 31-35.
    [3] Petrović V. Subjective tests for image fusion evaluation and objective metric validation. Information Fusion, 2007, 8(2): 208-216. [DOI:10.1016/j.inffus.2005.05.001]
    [4] 张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估. 自动化学报, 2014, 40(2): 306-315.
    [5] Cvejic N, Canagarajah CN, Bull DR. Image fusion metric based on mutual information and Tsallis entropy. Electronics Letters, 2006, 42(11): 626-627. [DOI:10.1049/el:20060693]
    [6] Piella G, Heijmans H. A new quality metric for image fusion. Proceedings of the 2003 IEEE International Conference on Image Processing. Barcelona, Spain. 2003. 173-176.
    [7] Luo XY, Zhang J, Dai QH. Saliency-based geometry measurement for image fusion performance. IEEE Transactions on Instrumentation and Measurement, 2012, 61(4): 1130-1132. [DOI:10.1109/TIM.2011.2174898]
    [8] Xydeas CS, Petrovic V. Objective image fusion performance measure. Electronics Letters, 2000, 36(4): 308-309. [DOI:10.1049/el:20000267]
    [9] Xydeas CS, Petrovic VS. Objective pixel-level image fusion performance measure. Proceedings of SPIE 4051, Sensor Fusion: Architectures, Algorithms, and Applications IV. Orlando, FL, USA. 2000. 89-98.
    [10] Zhang ZG. An approach to multiple attribute group decision making for supplier selection. Proceedings of 2011 IEEE International Conferenc on Advanced Management Science. Chengdu, China. 2010. 536-539.
    [11] 陈广秋, 高印寒, 段锦, 等. 基于奇异值分解的PCNN红外与可见光图像融合. 液晶与显示, 2015, 30(1): 126-136.
    [12] 沈瑜, 党建武, 冯鑫, 等. 基于Tetrolet变换的红外与可见光融合. 光谱学与光谱分析, 2013, 33(6): 1506-1511.
    [13] 王珺, 彭进业, 何贵青, 等. 基于非下采样Contourlet变换和稀疏表示的红外与可见光图像融合方法. 兵工学报, 2013, 34(7): 815-820.
    [14] 周渝人, 耿爱辉, 王莹, 等. 基于对比度增强的红外与可见光图像融合. 中国激光, 2014, 41(9): 0909001.
    [15] 杨桄, 童涛, 陆松岩, 等. 基于多特征的红外与可见光图像融合. 光学精密工程, 2014, 22(2): 489-496.
    [16] 郑红, 郑晨, 闫秀生, 等. 基于剪切波变换的可见光与红外图像融合算法. 仪器仪表学报, 2012, 33(7): 1613-1619.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

朱亚辉.聚类分析的红外与可见光融合质量指标相似性研究.计算机系统应用,2018,27(2):216-222

Copy
Share
Article Metrics
  • Abstract:1602
  • PDF: 2721
  • HTML: 1225
  • Cited by: 0
History
  • Received:April 14,2017
  • Revised:May 02,2017
  • Online: February 05,2018
Article QR Code
You are the first992297Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063