Moving Object Detection Algorithm Based on Deep Encoder-Decoder Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Moving object detection algorithms are widely used in video surveillance and other fields. But due to noise, illumination changes and other interference, traditional algorithms are often ineffective. To get a better performance, we transform the problem into a pixel-wise segmentation problem, and propose a novel algorithm based on deep encoder-decoder neural networks. We train an encoder-decoder network offline to learn the differences between the background and the video frame. We firstly use the Gaussian Mixture Model (GMM) to generate a background, and then feed video frames and the background into the encoder-decoder network to get detection results. This method utilizes the advantages of deep convolution network in anti-noise and feature learning, and performs well without complicated parameter tuning. We experiment on the CDnet2014 dataset, and results show that the algorithm we propose performs much better than the original GMM algorithm, and even outperforms some top algorithms in some scenes. Due to the simple network architecture, our algorithm is capable of almost real-time processing using a GPU, which shows its great practicality.

    Reference
    Related
    Cited by
Get Citation

侯畅,董兰芳.基于深度编解码网络的运动目标检测算法.计算机系统应用,2018,27(1):10-19

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 07,2017
  • Revised:April 26,2017
  • Adopted:
  • Online: November 14,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063