Adaptive Genetic Algorithm with Density Weighted
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The traditional adaptive genetic algorithm is slow in convergence and easy to fall into the local optimal solution. In order to resolve this problem, an adaptive genetic algorithm with density weighted is put forward in this study. Based on distribution density of population, this new algorithm can dynamically change the crossover probability and mutation probability of genetic algorithm, and combine with the best individual method. The results of the experiment show that the new algorithm can change the stability of local population, speed up the convergence, and improve its robustness and application.

    Reference
    Related
    Cited by
Get Citation

聂文亮,蔡黎,邱刚,李春莉.带密度加权的自适应遗传算法.计算机系统应用,2018,27(1):137-142

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 28,2017
  • Revised:April 20,2017
  • Adopted:
  • Online: December 22,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063