Tool Wear Evaluation Based on Decision Tree Regression and AdaBoost Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, the cutting force and vibration signals in different axial directions and the RMS of the acoustic emission signal in the milling of the high speed CNC cutters are fully utilized to evaluate the tool wear in the data-driven method. In this study, the sensitive features related to tool wear are explored from three aspects: time-domain, frequency-domain and joint time-frequency domain, and the feature extraction methods include time-domain statistical analysis, fast Fourier transform (FFT) between time-domain and frequency-domain, and wavelet transform (WT) in time-frequency domain. In this paper, the decision tree will be used for regression problems, rather than classification issues, to assess the tool wear value. And then, the AdaBoost algorithm is introduced to improve the performance of the decision tree regression (DTR), and the performance of the adaptive boosted decision tree regression (DTR-Ada) model and the original model are compared at the aspects of the accuracy, steadiness and applicability. The result shows the DTR-Ada model can improve the accuracy and stability of the fitting and prediction, and it also achieves a good effect on the applicability of the new tool wears prediction.

    Reference
    Related
    Cited by
Get Citation

陶耀东,曾广圣,李宁.基于回归树和AdaBoost方法的刀具磨损评估.计算机系统应用,2017,26(12):212-219

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 20,2017
  • Revised:April 10,2017
  • Adopted:
  • Online: December 07,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063