Survey of GPU Virtualization
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The emergence of HPC cloud has inspired service provider to deploy GPU in the cloud ecosystem (e.g., Amazon EC2 GPU instance, Aliyun GPU Server). GPU as a computing accelerator is playing an indispensable role in clouding computing. Due to the intrinsic sharing feature of cloud, GPU sharing does not only boost the utilization, lower the cost, but also makes it easier to manage. GPU virtualization comes to solve this problem through Hypervisor and cooperation of software and hardware. This paper collects the methodologies of GPU virtualization and makes a classification and analysis. In addition, it concludes the existing problems and proposes the future works of GPU virtualization.

    Reference
    [1] AMAZON. Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.com/ec2/. [2014].
    [2] 高性能计算. https://hpc.aliyun.com/product/gpu_bare_metal/.
    [3] Virtualization. https://en.wikipedia.org/wiki/Virtualization. [2017-07-11].
    [4] Vmware. http://www.vmware.com/.
    [5] Barham P, Dragovic B, Fraser K, et al. Xen and the art of virtualization. ACM Sigops Operating Systems Review, 2003, 37(5): 164-177. [DOI:10.1145/1165389]
    [6] Bakhoda A, Yuan GL, Fung WWL, et al. Analyzing CUDA workloads using a detailed GPU simulator. Proc. of IEEE International Symposium on Performance Analysis of Systems and Software, 2009. ISPASS 2009. Boston, MA, USA. 2009. 163-174.
    [7] Bellard F. QEMU, a fast and portable dynamic translator. Proc. of the Annual Conference on USENIX Annual Technical Conference. Anaheim, CA, USA. 2005. 41.
    [8] Hiremane R. Intel virtualization technology for directed I/O (Intel VT-d). Technology@ Intel Magazine, 2007, 4(10).
    [9] Gupta V, Gavrilovska A, Schwan K, et al. GViM: GPU-accelerated virtual machines. Proc. of the 3rd ACM Workshop on System-level Virtualization for High Performance Computing. Nuremburg, Germany. 2009. 17-24.
    [10] Duato J, Peña AJ, Silla F, et al. rCUDA: Reducing the number of GPU-based accelerators in high performance clusters. Proc. of International Conference on High Performance Computing and Simulation. Caen, France. 2010. 224-231.
    [11] Giunta G, Montella R, Agrillo G, et al. A GPGPU transparent virtualization component for high performance computing clouds. In: D'Ambra P, Guarracino M, Talia D, eds. Euro-Par 2010-Parallel Processing. Berlin Heidelberg, Germany. 2010. 379-391.
    [12] Suzuki Y, Kato S, Yamada H, et al. GPUvm: Why not virtualizing GPUs at the hypervisor? Proc. of the 2014 USENIX Conference on USENIX Annual Technical Conference. Philadelphia, PA, USA. 2014. 109-120.
    [13] Tian K, Dong Y, Cowperthwaite D. A Full GPU virtualization solution with mediated pass-through. Proc. of the 2014 USENIX Conference on USENIX Annual Technical Conference. Philadelphia, PA, USA. 2014. 121-132.
    [14] Dong Y Z, Xue M C, Zheng X, et al. Boosting GPU virtualization performance with hybrid shadow page tables. Proc. of the 2015 USENIX Conference on Usenix Annual Technical Conference. Santa Clara, CA, USA. 2015. 517-528.
    [15] Han SJ, Jang K, Park KS, et al. PacketShader: A GPU-accelerated software router. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 195-206. [DOI:10.1145/1851275]
    [16] Xue MC, Tian K, Dong YZ, et al. gScale: Scaling up GPU virtualization with dynamic sharing of graphics memory space. 2016 USENIX Annual Technical Conference (USENIX ATC 16). Denver, CO, USA. 2016.
    [17] Xia L, Lange J, Dinda P, et al. Investigating virtual passthrough I/O on commodity devices. ACM SIGOPS Operating Systems Review, 2009, 43(3): 83-94. [DOI:10.1145/1618525]
    [18] Gottschlag M, Hillenbrand M, Kehne J, et al. LoGV: Low-overhead GPGPU virtualization. Proc. of the 10th Inter-national Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC). Zhangjiajie, China. 2013. 1721-1726.
    [19] Gupta V, Schwan K, Tolia N, et al. Pegasus: Coordinated scheduling for virtualized accelerator-based systems. Proc. of the 2011 USENIX Conference on USENIX Annual Technical Conference. Portland, OR, USA. 2011. 3.
    [20] Dowty M, Sugerman J. GPU virtualization on VMware's hosted I/O architecture. ACM SIGOPS Operating Systems Review, 2009, 43(3): 73-82. [DOI:10.1145/1618525]
    [21] Dong YZ, Dai JQ, Huang ZT, et al. Towards high-quality I/O virtualization. Proc. of SYSTOR 2009: The Israeli Experimental Systems Conference. Haifa, Israel. 2009. Article No.12.
    [22] Shi L, Chen H, Sun JH, et al. vCUDA: GPU-accelerated high-performance computing in virtual machines. IEEE Trans. on Computers, 2012, 61(6): 804-816. [DOI:10.1109/TC.2011.112]
    [23] Qi ZW, Yao JG, Zhang C, et al. VGRIS: Virtualized GPU resource isolation and scheduling in cloud gaming. ACM Trans. on Architecture and Code Optimization (TACO), 2014, 11(2): Article No.17.
    [24] Rossbach CJ, Currey J, Silberstein M, et al. PTask: Operating system abstractions to manage GPUs as compute devices. Proc. of the Twenty-Third ACM Symposium on Operating Systems Principles. Cascais, Portugal. 2011. 233-248.
    [25] Kato S, McThrow M, Maltzahn C, et al. Gdev: First-class GPU resource management in the operating system. Proc. of the 2012 USENIX Conference on Annual Technical Conference. Boston, MA, USA. 2012. 37.
    [26] Lagar-Cavilla HA, Tolia N, Satyanarayanan M, et al. VMM-independent graphics acceleration. Proc. of the 3rd International Conference on Virtual Execution Environments. San Diego, California, USA. 2007. 33-43.
    [27] Merrick P, Allen S, Lapp J. XML remote procedure call (XML-RPC): U.S., Patent 7028312. [2006-04-11].
    [28] Humphreys G, Eldridge M, Buck I, et al. WireGL: A scalable graphics system for clusters. Proc. of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM. New York, NY, USA. 2001. 129-140.
    [29] Becchi M, Sajjapongse K, Graves I, et al. A virtual memory based runtime to support multi-tenancy in clusters with GPUs. Proc. of the 21st International Symposium on High-Performance Parallel and Distributed Computing. Delft, The Netherlands. 2012. 97-108.
    [30] Dong YZ, Yang XW, Li JH, et al. High performance network virtualization with SR-IOV. Journal of Parallel and Distributed Computing, 2012, 72(11): 1471-1480. [DOI:10.1016/j.jpdc.2012.01.020]
    [31] Di Pietro RD, Lombardi F, Villani A. CUDA leaks: Information leakage in GPU architectures. arXiv:1305.7383, 2013.
    [32] Virtualization solution. http://www.amd.com/en-us/solutions/professional/virtualization.
    [33] Ravi VT, Becchi M, Agrawal G, et al. Supporting GPU sharing in cloud environments with a transparent runtime consolidation framework. Proc. of the 20th International Symposium on High Performance Distributed Computing. San Jose, California, USA. 2011. 217-228.
    [34] Chen H, Shi L, Sun JH. VMRPC: A high efficiency and light weight RPC system for virtual machines. Proc. of the 18th International Workshop on Quality of Service (IWQoS). Beijing, China. 2010. 1-9.
    [35] Menychtas K, Shen K, Scott ML. Enabling OS research by inferring interactions in the black-box GPU stack. Proc. of the 2013 USENIX Conference on Annual Technical Conference. San Jose, CA, USA. 2013. 291-296.
    [36] NVIDIA grid virtual GPU technology. http://www.nvidia.com/object/grid-technology.html.
    [37] 仝伯兵, 杨昕吉, 谢振平, 等. GPU虚拟化技术及应用研究. 软件导刊, 2015, 14(6): 153-156.
    [38] 赵冰. GPU虚拟化中安全问题的研究[硕士学位论文]. 西安: 西安电子科技大学, 2014.
    Cited by
Get Citation

余时强,张为华. GPU虚拟化相关技术研究综述.计算机系统应用,2017,26(12):25-31

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 06,2017
  • Revised:March 23,2017
  • Online: December 07,2017
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063