Target Recognition Based on Multilayer Feature Extraction of Convolution Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Target recognition has been the hot issue in the field of artificial intelligence. In order to enhance the efficiency of target recognition, this paper proposes a method based on multilayer feature extraction of convolutional neural network. By inputting images into convolutional neural network for training, this method implements feature extraction at each full connection layer of network, inputs the features obtained into classifier, and then compares the output results. The lower full connection layer activated by relu function is selected as feature extraction layer, whose recognition rate is higher than that in higher full connection layer. This paper builds up office supplies dataset, and realizes the office supplies identification system based on the multilayer feature extraction of convolutional neural network. The layer relu6 of AlexNet is selected feature extraction layer, and the optimal training image quantity as well as the optimal classifier construction system is chosen, which verifies the feasibility of this method.

    Reference
    Related
    Cited by
Get Citation

江彤彤,成金勇,鹿文鹏.基于卷积神经网络多层特征提取的目标识别.计算机系统应用,2017,26(12):64-70

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 03,2017
  • Revised:March 20,2017
  • Adopted:
  • Online: December 07,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063