Improvement of AdaBoost Algorithm Based on Sample Noise Detection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the traditional AdaBoost algorithm, there are over-fitting problems caused by noise samples. In this paper, an improved AdaBoost algorithm based on noise detection is proposed, called NAdaBoost. According to the traditional AdaBoost algorithm, in the misclassified samples, noise samples vary widely in some attributes. NAdaBoost can, instead, determine the noise samples based on this, and then reuse the algorithm to classify the two types of samples, and ultimately achieve the purpose of improving the accuracy of classification. The experiment on the binary classification shows that the proposed algorithm has a higher classification accuracy compared with the traditional AdaBoost algorithm, as well as relative improvement of algorithms.

    Reference
    Related
    Cited by
Get Citation

张子祥,陈优广.基于样本噪声检测的AdaBoost算法改进.计算机系统应用,2017,26(12):186-190

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 03,2017
  • Revised:March 20,2017
  • Adopted:
  • Online: December 07,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063