Implicit Music Recommender Based on Large Scale Word-Embedding
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A large scale word-embedding based implicit music recommender is proposed to address the problems that most of current recommendation systems cannot work in the scenario of large scale implicit feedback recommendation. This model employs the Word2Vec technique which is popular in Natural Language Processing in recent years. By learning the songs co-occurrences in the users' history collections, we can get the distributed representation of users and songs with a low-dimension and dense vector. In this way, we can get the similarities of users and songs which could be used for the recommendation and we also analyze the correctness of application of Word2Vec technique in recommendation. This model can effectively solve the problem mentioned above with the accuracy remaining the same. In addition, this model can converge faster and take less memory than those of traditional methods.

    Reference
    Related
    Cited by
Get Citation

于帅,林宣雄,邱媛媛.大规模隐式反馈的词向量音乐推荐模型.计算机系统应用,2017,26(11):28-35

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 20,2017
  • Revised:March 09,2017
  • Adopted:
  • Online: October 30,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063