Recommendation Algorithm Based on Synthetic Similarity and Social Tag
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The traditional methods of personalized recommendation are faced with the problems of sparse data and cold start. This paper combines the previous research of the project team and introduces the user interest to form the comprehensive similarity, based on the comprehensive consideration of user characteristics and user trust degree. At the same time, this paper uses the social tags which enrich the recommendation data to solve the problem of sparse data in current recommendation system. Firstly, the similarity degree is used to find the similar neighbors of the users and form a tag set by labeling the similar neighbors. Secondly, a tag-based recommendation algorithm is used to generate the final recommendation list. The experimental results show that the proposed algorithm can effectively improve the accuracy of recommendation and the recall rate.

    Reference
    Related
    Cited by
Get Citation

时念云,张芸,马力.基于综合相似度和社交标签的推荐算法.计算机系统应用,2017,26(10):178-183

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 16,2017
  • Revised:
  • Adopted:
  • Online: October 31,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063