Vehicle Logo Recognition Using Tree-Based Convolution Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to improve the recognition rate of vehicle in natural situations, this paper proposes a vehicle logo recognition modal based on a multi-path tree structure convolutional neural networks, which modal with different convolution kernel in the same convolutions, namely T-CNN. Firstly, different layer convolution features are obtained and are joined together as the input of the fully connected layer to get classifiers. Compared with the traditional method, the theoretical analysis and simulation results show that T-CNN can increase the recognition accuracy up to 98.43%.

    Reference
    Related
    Cited by
Get Citation

吴章辉,李志清,杨晓玲,刘雨桐.树状卷积神经网络的车标识别应用.计算机系统应用,2017,26(10):166-171

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 12,2017
  • Revised:
  • Adopted:
  • Online: October 31,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063