Recommended Algorithm Based on User Trust and Interest with Probability Matrix Factorization
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The traditional collaborative filtering recommendation algorithm has such problems as data sparseness, cold-start and new users. With the rapid development of social network and e-commerce, how to provide personalized recommendations based on the trust between users and user interest tag is becoming a hot research topic. In this study, we propose a probability matrix factorization model (STUIPMF) by integrating social trust and user interest. First, we excavate implicit trust relationship between users and potential interest label from the perspective of user rating. Then we use the probability matrix factorization model to conduct matrix decomposition of user ratings information, users trust relationship, user interest label information, and further excavate the user characteristics to ease data sparseness. Finally, we make experiments based on the Epinions dataset to verify the proposed method. The results show that the proposed method can to some extent improve the recommendation accuracy, ease cold-start and new user problems. Meanwhile, the proposed STUIPMF approach also has good scalability.

    Reference
    Related
    Cited by
Get Citation

彭鹏,米传民,肖琳.基于用户信任和兴趣的概率矩阵分解推荐方法.计算机系统应用,2017,26(9):1-9

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 23,2016
  • Online: October 31,2017
Article QR Code
You are the first991234Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063