Discriminative Low-Rank Dictionary Leaning For Face Recognition
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Face recognition is active in the field of computer vision and pattern recognition and has extremely wide-spread application prospect. However, the problem that both training images and testing images are corrupted is not well solved in face recognition task. To address such a problem, this paper proposes a novel Discriminative Low-Rank Dictionary Learning for Low-Rank Sparse Representation algorithm (DLRD_LRSR) aiming to learn a pure dictionary. We suggest each sub dictionary and sparse representation be low-rank for reducing the effect of noise in training samples and introduce a novel discriminative reconstruction error term to make the coefficient more discriminating. We demonstrate the effectiveness of our approach on three public face datasets. Our method is more effective and robust than the previous competitive dictionary learning method.

    Reference
    Related
    Cited by
Get Citation

利润霖.面向人脸识别的判别低秩字典学习算法.计算机系统应用,2017,26(7):137-145

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 18,2016
  • Revised:January 16,2017
  • Adopted:
  • Online: October 31,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063