KD Tree-Based Privacy Protection of Data Publishing
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of regional health information sharing services, an increasing number of patient records are released. However, the adversary can infer the patient’s privacy information through the patient’s attributes, thereby causing the patient’s privacy leakage. Based on the above requirements, a privacy protection data publishing algorithm based on KD tree is proposed. By the properties of KD-tree, the generalized value of each attribute is decomposed until the generalized value of all attributes cannot be decomposed to ensure that the generalized value of all attributes of each leaf node is minimized to reduce the information loss. During the decomposition of equivalent tuple attributes, the number of sensitive attribute values for each node is made to be a diversity constraint to reduce the risk of privacy leakage. The experimental results show that this scheme can reduce the risk of leakage of privacy, and information loss.

    Reference
    Related
    Cited by
Get Citation

林国滨,姚志强,熊金波,林铭炜.基于KD树的信息发布隐私保护.计算机系统应用,2017,26(8):206-211

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 11,2016
  • Revised:
  • Adopted:
  • Online: October 31,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063