Improvement of Similarity Measurement Method for Defect Data
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [10]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The study of fuzzy cluster analysis is mainly the classification of samples. In this paper, the fuzzy clustering method is used to classify the defects of software, and the method of attribute weight calculation is introduced. The similarity of defect data is analyzed with the method of attribute proximity in data mining. According to the category of attributes, it does not only reflect the degree of similarity between the attributes of the defect data, but also reflects the distance between the attributes. In this paper, the software defect data are analyzed and compared with the measurement results. The experimental results show that the improved fuzzy clustering similarity measurement method has somehow improved in classification accuracy.

    Reference
    1 王骏, 王士同, 邓赵红. 聚类分析研究中的若干问题. 控制与决策, 2012, 27(3):321-328.
    2 王斌, 吴太文, 胡培培. 软件缺陷分类和分析研究. 计算机科学, 2013, 40(9):16-20, 24.
    3 Han JW, Kamber M, Pei J. 数据挖掘概念与技术. 范明, 孟小峰, 译. 3版. 北京:机械工业出版社, 2012.
    4 黄定轩, 武振业, 宗蕴璋. 基于属性重要性的多属性客观权重分配方法. 系统工程理论方法应用, 2004, 13(3):203-207.
    5 刘文军. 连续值域决策表的一种属性权重确定方法. 模糊系统与数学, 2008, 22(3):160-166.
    6 曹秀英, 梁静国. 基于粗集理论的属性权重确定方法. 中国管理科学, 2002, 10(5):98-100.
    7 柳炳祥, 李海林. 基于模糊粗糙集的因素权重分配方法. 控制与决策, 2007, 22(12):1437-1440.
    8 杨淑莹, 张桦. 模式识别与智能计算-MATLAB技术实现. 3版. 北京:电子工业出版社, 2015.
    9 李秀格. 基于模糊等价矩阵的模糊聚类相关理论研究[硕士学位论文]. 沈阳:辽宁大学, 2015.
    10 李楠, 王晓博, 刘超. 自动分析软件缺陷报告间相关性的方法研究. 计算机应用研究, 2010, 27(6):2134-2139.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

万琳,杨腾翔,刘海宁.缺陷数据的相似性度量方法改进.计算机系统应用,2017,26(8):152-156

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 28,2016
  • Online: October 31,2017
Article QR Code
You are the first991214Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063