Combined Feature Selection Algorithm Based on Mutual Information
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    It is very important to reduce the candidate features in the machine learning such as classification and clustering. Most of the existing methods are based on a single feature on the target T or the association between the feature and the feature on the Y. However, these methods do not take into the combined features, such as attributes A, B contains a little amount of information in Y, and even completely independent of Y, but A & B can provide information on Y lot of information, or even completely determine the Y. Based on this, we can extract an algorithm to find single and combined features from the feature set, firstly combination of non-significant features in accordance with the conditional probability distribution table to generate new candidate features Then, the single feature and the combined features are chosen based on the criterion of the maximum correlation and the minimum redundancy. Finally, the experiment is carried out on the virtual and real data sets respectively, and the experimental results show that the feature selection algorithm can mine the dataset better, Which improves the accuracy of the corresponding machine learning algorithm to a certain extent.

    Reference
    Related
    Cited by
Get Citation

李叶紫,周怡璐,王振友.基于互信息的组合特征选择算法.计算机系统应用,2017,26(8):173-179

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 05,2016
  • Online: October 31,2017
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063