Joint-PSO Algorithm for Weighted Subspace Fitting of DOA Estimation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Among existing DOA estimation methods, the Weighted Subspace Fitting (WSF) algorithm is well-known for its high resolution of DOA estimation. However, its computational complexity is extremely high and cannot meet the real-time requirements. In this paper, we propose a Joint-PSO algorithm for WSF with less complexity. This algorithm has the following key steps: firstly we use the solution of Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) which can get the DOA estimation with extremely low complexity and stochastic Cramer-Rao bound (CRB) to determine a novel initialization space in the whole search space. Then, we randomly initiate a small number of particle in that small area. Finally, we let the particles “fly” to the solution with a suitable speed. Additionally, we also discuss and optimize the inertia factor of PSO algorithm. The simulation results find that for the same Root-Mean-Square-Error (RMSE), the particles and iteration number of the proposed algorithm are much less than that of the original PSO algorithm. As a result, the computational complexity can be greatly reduced.

    Reference
    Related
    Cited by
Get Citation

龚琛,李世宝,陈海华,刘建航.针对加权子空间拟合的联合粒子群优化算法.计算机系统应用,2017,26(8):162-167

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 29,2016
  • Revised:
  • Adopted:
  • Online: October 31,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063