Prediction for Air Route Passenger Flow Based on Grey Prediction Model
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The accurate prediction on airline passenger flow plays an important role in sales policy for aviation enterprises. Based on the data of Sanya-Beijing route of a particular airline in 6 years, this paper uses the regression analysis, gray forecast method to analyze the passenger flow in 2016.The result shows the Grey forecasting method of airline passenger flow forecasting is more accurate than others, which sets a significantly guiding model for airlines sales policies.

    Reference
    1 张兆宁, 郭爽. 首都机场飞行流量的灰色区间预测. 中国民航大学学报, 2007, 25(6): 1–4.
    2 杨名桂, 杨晓霞. 基于灰色预测模型的重庆市入境旅游客流量预测. 西南师范大学学报(自然科学版), 2010, 35(3): 259–263.
    3 演克武, 朱金福. 基于支持向量机回归算法的航空公司客流量预测研究. 企业经济, 2010, (3): 88–90.
    4 路川, 胡欣杰. 区域航空市场航线客流量预测研究. 计算机技术与发展, 2010, 20(4): 84–88, 92.
    5 关静. 基于灰色支持向量机的民航旅客吞吐量预测. 大连交通大学学报, 2013, 34(3): 41–43.
    6 屈拓. 组合模型在机场旅客吞吐量预测中的应用. 计算机仿真, 2012, 29(4): 108–111.
    7 任崇岭, 曹成铉, 李静, 等. 基于小波神经网络的短时客流量预测研究. 科学技术与工程, 2011, 11(21): 5099–5103, 5110. [DOI:10.3969/j.issn.1671-1815.2011.21.031]
    8 刘夏, 陈磊, 李苑辉, 等. 基于组合方法的三亚机场客流量预测. 计算机系统应用, 2016, 25(8): 23–28.
    9 Sun YJ, Zhang GH, Yin HH. Passenger flow prediction of subway transfer stations based on nonparametric regression model. Discrete Dynamics in Nature & Society, 2014, 2014: 397154.
    10 Leng B, Zeng JB, Xiong Z, et al. Probability tree based passenger flow prediction and its application to the Beijing subway system. Frontiers of Computer Science, 2013, 7(2): 195–203. [DOI:10.1007/s11704-013-2057-y]
    11 邓聚龙. 灰理论基础. 武汉: 华中科技大学出版社, 2002: 361–369.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘夏,李苑辉,陈磊,陈焕东,陈明锐.基于灰色预测模型的航线客流量预测.计算机系统应用,2017,26(7):221-226

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 17,2016
  • Revised:January 04,2017
  • Online: October 31,2017
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063