Panic Crowd Behavior Detection Based on Intersection Density of Motion Vector
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to identify the panic crowd behavior with a more accurate and effective method, a new scheme is proposed which can utilize the intersection density of motion vector in the video to judge the abnormal panic crowd behavior. This algorithm is based on LK optical flow to extract information of motion vector from moving people, and to obtain the intersection between two motion vectors, then uses divided image blocks to get the intersection density which is the key to identify abnormal crowd. Experiments on several datasets show that this algorithm can identify the panic crowd behavior with high accuracy.

    Reference
    Related
    Cited by
Get Citation

钟帅,蔡坚勇,廖晓东,黄澎,张炜隽.基于运动矢量交点密集度的人群恐慌行为检测.计算机系统应用,2017,26(7):210-214

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 31,2016
  • Revised:January 04,2017
  • Adopted:
  • Online: October 31,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063