Hexahedral Voxel Grid 3D Geological Model Partitioning Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In view of the common hexahedral voxel grid 3D geological model, we introduce a 3D geological model partitioning algorithm. In the process of cutting, the cut surface will intersect with the edge of the hexahedral element. Firstly, the geological model and the cut plane are projected into the same 2D plane at the same time, the process of portioning between geological model and cut plane in the 3D is converted to an operation that looks for the intersection point between the line and the quadrilateral grid. In order to reduce the number of judgement intersections, we would find out the possible intersection area by the Line slope direction of cutting plane, then judge whether there is an intersection carefully. Next, we find other points of intersection that could not be got by projection, and connect the node coordinates according to certain rules form the quadrilateral grid and triangulation. Finally, we display the TIN. Experimental results prove that this method is feasible.

    Reference
    Related
    Cited by
Get Citation

张文东,明志强,刘培刚.六面体体元网格三维地质模型剖切算法.计算机系统应用,2017,26(7):195-199

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 27,2016
  • Revised:December 12,2016
  • Adopted:
  • Online: October 31,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063