Vehicle Plate Location by the Texture Recognition and Adaboost Classifier Based on DM642
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The Intelligent transportation system is a real-time, accurate and efficient integrated transportation management system, with the LPR(License Plate Recognition) as one of its key technologies. In order to realize the real-time detection of license plate in the embedded systems, the license plate detection, location and recognition technology based on TMS320DM642 are studied. This paper proposes a kind of license plate location algorithm by combining texture detection with the Adaboost classifier. The system design combining with DM642 is based on EMCV and Opencv image processing library to come true coding porting. The system avoids the non-directional under the condition of only texture detection and the non-integrity under the condition of only Adaboost Classification, it also improves the accuracy of the positioning. In addition, the license plate image which has been located can be sent to the PC server by the TCP protocol. Then the license plate location and monitoring of remote vehicles can be realized.

    Reference
    1 丁亚男. 基于图像分解的车牌定位算法[J]. 电子科技, 2014, 27(1): 42-44.
    2 万燕, 徐勤燕, 黄蒙蒙. 复杂背景中基于纹理和颜色的车牌定位研究[J]. 计算机应用与软件, 2013, 30(10): 259-262. [DOI:10.3969/j.issn.1000-386x.2013.10.089]
    3 郭延祥, 陈耀武. 基于边缘检测和颜色纹理直方图的车牌定位方法[J]. 计算机科学与探索, 2014, 8(6): 719-726.
    4 孙 红, 郭 凯. 融合字符纹理特征与RGB颜色特征的车牌定位[J]. 光电工程, 2015, 42(6): 014-019.
    5 柴晓荣, 刘锦高. 基于纹理分析的精确车牌定位算法[J]. 计算机系统应用, 2010, 19(2): 160-163.
    6 穆长江, 苑玮琦. 基于纹理特征的车牌定位方法[J]. 控制工程, 2004, 11(6): 574-576.
    7 潘 勇, 赵佳乐, 徐志刚, 赵祥模. 基于纹理特征的低照度环境下车牌定位与识别算法[J]. 公路交通科技, 2015, 32(7): 140-148.
    8 张晓娜, 何仁, 陈士安, 姚明. 基于主动学习Adaboost算法与颜色特征的车牌定位[J]. 交通运输工程学报. 2013, 13(1): 121-126.
    9 曾 毅. 遗传算法在车牌定位中的应用[J]. 福建电脑, 2015, 7: 88-90.
    10 陈佳. 基于形态学的车牌定位方法的研究与应用[硕士学位论文]. 衡阳: 南华大学, 2015.
    11 Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997, 55(1): 119–139.
    12 聂江浩. 基于DM642的人脸检测系统的设计与实现[硕士学位论文]. 重庆: 重庆大学, 2009.
    13 Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. Proc. of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA. 2001. I-511–I-518.
    14 Lienhart R, Kuranov A, Pisarevsky V. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. Lecture Notes in Computer Science. Berlin, Heidelberg. Springer. 2003. 297–304.
    15 TMS320DM642 Video/Imaging Fixed-Point Digital Signal Processor (SPRS200J). Texas Instruments, 2005.
    16 C Fast RTS Library User Guide (Rev 1.0). Texas Instruments, 2008.
    17 TMS320C6000 Optimizing Compiler User’s Guide (SPRU187L). Texas Instruments, 2004.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈存弟,刘金清,刘引,蔡淑宽,何世强,周晓童,邓淑敏,吴庆祥.基于DM642的纹理检测与Adaboost分类器相结合的车牌定位.计算机系统应用,2017,26(7):56-64

Copy
Share
Article Metrics
  • Abstract:1551
  • PDF: 2800
  • HTML: 0
  • Cited by: 0
History
  • Received:October 30,2016
  • Revised:December 05,2016
  • Online: October 31,2017
Article QR Code
You are the first990429Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063