Prediction for SO2 Concentration Based on the Fuzzy Time Series and Support Vector Machine (SVM) on Expressway
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The present prediction methods for SO2 concentration suffer from the disadvantages that there is no uniform understanding of pollutant sources and influencing factors, small sample data is sensitive, and prediction methods are easy to fall into local optimum etc. In order to solve these problems, a method for the prediction of SO2 concentrations on expressway is proposed which is based on fuzzy time series and support vector machine (SVM), and provides a reliable theoretical support for building the highway environmental health monitoring system. Based on the seasonal variation of SO2 concentrations, the method takes the season as time series, 24h for graining window width. Through the Gaussian kernel function to extract the eigenvalues of the original sample data, which are input support vector machine (SVM) model for training, and k-fold cross validation method combined with the grid division is used to optimize model parameters. Finally, a SO2 concentrations prediction model is established with the method in this paper. By using 1h average SO2 concentrations as sample data which are obtained by Shanxi taijiu expressway monitoring station from April 2014 to March 2014, the LIBSVM tool is used to realize the calculation process on the MATLAB platform. The results show that based on fuzzy time series and support vector machine (SVM), the forecasting methods of SO2 concentration is not restricted by the research of machine rational theory, and supports small-sample learning, otherwise, the nonlinear fitting effect is perfect, and the ability of generalization is well.

    Reference
    1 姜少蓉,薛志钢,李薇,杜谨宏,张沿成,王文双.我国环境空气 质量状况及大气污染对健康的影响.华北电力技术,2015, (8):7-13.
    2 徐晨雨,王晶,陈跃龙.北京市城市道路交通与大气污染关系 探究.商业经济,2015,(9):110-111,149.
    3 刘永,郭怀成.城市大气污染物浓度预测方法研究.安全与环 境学报,2004,4(4):60-62.
    4 Pai TY, Lo HM, Wan TJ, et al. Predicting air pollutant emissions from a medical incinerator using grey model and neural network. Applied Mathematical Modelling, 2014, 39(5-6):1513-1525.
    5 任永建,高庆先,周锁铨.山西省阳泉市大气环境数值模拟. 大气环境科学研究暨颗粒物污染防治与监测技术研讨 会,2010.
    6 荆涛,李霖,于文柱,王玉娟,郑永杰,田景芝.t 分布受控遗传 算法优化 BP 神经网络的 PM2.5 质量浓度预测.中国环境监 测,2015,31(4):100-105.
    7 赵宏,刘爱霞,王恺,白志鹏.环境空气 SO2 和 NO2 浓度的 GA_ANN 预测模型研究.计算机工程与应用,2010,46(8):199-201.
    8 王丽梅,袁野,姚建.基于 B-P 神经网络的城市大气 SO2 浓 度预测.安徽农业科学,2011,39(7):4278-4280.
    9 陈柳,马广大.大气中 SO2 浓度的小波分析及神经网络预测. 环境科学学报,2006,26(9):1553-1558.
    10 姚宁,马青兰,张晶,文印.基于 AGNES 算法优化 BP 神经网 络和 GIS 系统的大气污染物浓度预测.中国环境监测, 2015,31(3):113-117.
    11 Liu C B, Wang X F, Pan F. Parameters selection and stimulation of support vector machines based on ant colony optimization algorithm. Journal of Central South University, 2008,39(6):1309-1313.
    12 付学良,杨洋,李纯子.基于混沌-支持向量机的大气污染 物浓度预测模型.电子世界,2013,(4):78-79.
    13 马博,董海鹰,任伟.基于模糊综合支持向量机的特高压变 电站二次设备状态评估.计算机系统应用,2014,23(9):191-197.
    14 Wang Q, Tian XM. Soft sensing based on fuzzy information granulation. Trans. of Beijing Institute of Technology, 2012, 32(9):955-959.
    15 刘杰,杨鹏,吕文生,刘阿古达木,刘俊秀.模糊时序与支持向 量机建模相结合的 PM2.5 质量浓度预测.北京科技大学学 报,2014,36(12):1694-1702.
    16 郭龙.时间序列数据的周期性研究[硕士学位论文].成都:电子科技大学,2010.
    17 陈俏,曹根牛,陈柳.支持向量机应用于大气污染物时间序 列预测.计算机时代,2009,(9):1-3.
    18 于进,钱锋.基于粒子群优化的高斯核函数聚类算法.计算 机工程,2010,36(14):22-23.
    19 徐咏梅,柳桂国,柳贺.高斯径向基核函数参数的 GA 优化 方法.电力自动化设备,2008,28(6):52-55.
    20 王行甫,陈家伟.基于高斯核的 SVM 的参数选择.计算机系 统应用,2014,23(7):242-245.
    21 国家环境保护部,国家质量监督检验检疫总局. GB3095-2012 环境空气质量标准.北京:中国环境科学出 版社,2012.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

岳鹏程,张林梁,马阅军.基于模糊时序和支持向量机的高速公路SO2浓度预测算法.计算机系统应用,2017,26(6):1-8

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 29,2016
  • Revised:October 31,2016
  • Online: June 08,2017
Article QR Code
You are the first991253Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063