Segmented Identification and Recursive Algorithm for Non-Stationary Time Series Data
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In fact, there widely exists a kind of time series data that is non-stationary but can be transformed into several local stationary time series data, the identification problem of the non-stationary time series data is studied, and then this paper proposes a piecewise recursive identification algorithm with mechanism. Based on the definition of stationary time series data, the precipitation algorithm which has the mean variance point, the mutation point and the mutation point of the autocorrelation function, is constructed based on the statistical characteristics such as the mean and variance and autocorrelation function. On this basis, a series of locally stationary sub sequences are identified from the identified non-stationary sequences, and then, the Burg algorithm is applied to the recursive identification of local stationary subsequences. The experimental results show that the new algorithm can divide the boundary points of the local stationary sub sequences with smaller position deviation. At the same time, the calculation efficiency is improved significantly under the condition of high accuracy.

    Reference
    Related
    Cited by
Get Citation

黄雄波.非平稳时序数据的分段辨识及其递推算法.计算机系统应用,2017,26(5):180-185

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 14,2016
  • Revised:October 19,2016
  • Adopted:
  • Online: May 13,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063