Segmented Identification and Recursive Algorithm for Non-Stationary Time Series Data
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In fact, there widely exists a kind of time series data that is non-stationary but can be transformed into several local stationary time series data, the identification problem of the non-stationary time series data is studied, and then this paper proposes a piecewise recursive identification algorithm with mechanism. Based on the definition of stationary time series data, the precipitation algorithm which has the mean variance point, the mutation point and the mutation point of the autocorrelation function, is constructed based on the statistical characteristics such as the mean and variance and autocorrelation function. On this basis, a series of locally stationary sub sequences are identified from the identified non-stationary sequences, and then, the Burg algorithm is applied to the recursive identification of local stationary subsequences. The experimental results show that the new algorithm can divide the boundary points of the local stationary sub sequences with smaller position deviation. At the same time, the calculation efficiency is improved significantly under the condition of high accuracy.

    Reference
    1 张贤达.用高阶累量辨识MA系统的新方法.电子学报, 1994,22(10):27-33.
    2 王正明,易东云.含ARMA噪声系统模型的参数辨识方法, 控制理论与应用,1996,13(8):471-475.
    3 熊渊博.ARMA模型参数的分步估计方法.湖南大学学报(自然科学版),2003,30(2):12-15.
    4 周毅,丁锋.依等价AR模型阶次递增的自回归滑动平均模型辨识. 华东理工大学学报(自然科学版),2008,34(3):425-431.
    5 张新广,李志农,王心怡,等.一种基于阶比域的AR模型盲辨识算法.振动与冲击,2009,28(5):41-43.
    6 博克斯,詹金斯,莱因泽尔.时间序列分析:预测与控制.北京:机械工业出版社,2011.
    7 Matilainen M, Nordhausen K, Oja H. New independent component analysis tools for time series. Statistics & Probability Letters, 2015:80-87.
    8 Yin Y, Shang PJ, Xia JN. Compositional segmentation of time series in the financial markets. Applied Mathematics and Computation, 2015:399-412.
    9 Bernas M, Płaczek B. Period-aware local modelling and data selection for time series prediction. Mechanical Systems and Signal Processing, 2016:60-77.
    10 王宏禹,邱天爽,陈喆.非平稳随机信号分析与处理.北京:国防工业出版社,2008.
    11 Spiridonakos MD, Fassois SD. Adaptable functional series TARMA models for non-stationary signal representation and their application to mechanical random vibration modeling. Signal Processing, 2014:63-79.
    12 朱学锋,韩宁.基于小波变换的非平稳信号趋势项剔除方法.飞行器测控学报,2006,25(5):81-85.
    13 林树宽,杨玫,乔建忠,等.一种非线性非平稳时间序列预测建模方法. 东北大学学报(自然科学版),2007,28(3):325-328.
    14 Djuric PM, Kay SM. Faye Boundreaux-Bartels G. Segmentation of nonstationary signals. Proc. of the IEEE ICASSP. 1992. 161-164.
    15 王文华,王宏禹.分段平稳随机过程的参数估计方法.电子科学学刊,1997,19(5):311-317.
    16 陈颖,李在铭.一种改进的分段平稳随机过程的参数估计方法.电子与信息学报,2003,25(6):735-740.
    17 金连文,韦岗.现代数字信号处理简明教程.北京:清华大学出版社,2003.
    18 杨叔子,吴雅,轩建平,等.时间序列分析的工程应用(上册). 武汉:华中科技大学出版社,2007.
    19 项静恬.动态数据处理-时间序列分析.北京:气象出版社,1986.
    20 黄雄波.时序数据的周期模式发现算法的递推改进.计算机技术与发展,2016,26(2):47-51.
    21 克西盖斯纳,沃特斯,哈斯勒.现代时间序列分析导论.北京:中国人民大学出版社,2015.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

黄雄波.非平稳时序数据的分段辨识及其递推算法.计算机系统应用,2017,26(5):180-185

Copy
Share
Article Metrics
  • Abstract:1242
  • PDF: 2087
  • HTML: 0
  • Cited by: 0
History
  • Received:August 14,2016
  • Revised:October 19,2016
  • Online: May 13,2017
Article QR Code
You are the first990540Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063