Change Point Detection Based on Constrained Hidden Markov Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The change point detection of time series is widely applied in various fields. In some applications, a minimum period is required before a state change. Motivated by such applications, a constrained Hidden Markov Model, which combines with the shortest state continuous length constraint, is proposed in this study. Moreover, a constrained Baum-Welch training algorithm and a constrained Viterbi state extraction algorithm are also given. And experimental results based on the simulation data and GNP data sets indicate that the constrained HMM has higher performance than the general HMM.

    Reference
    Related
    Cited by
Get Citation

庄玉,何振峰.基于约束HMM的变点检测算法.计算机系统应用,2017,26(5):133-138

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 06,2016
  • Revised:September 20,2016
  • Adopted:
  • Online: May 13,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063