Lithology Identification Based on Radial Basis Process Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Identification and evaluation of oil and gas reservoirs is an essential part in the work of oil exploration and development. Generally speaking, the existing lithology identification methods can't be expressed in formation heterogeneity, the impact of layer parameters varies with depth arising is not taken into account. This paper presents a model of lithologic identification based on radial basis process neural network, which is verified by the actual data. The experimental result shows that the proposed method has a high recognition rate, and it is a practical application method.

    Reference
    Related
    Cited by
Get Citation

秦研博,许少华.基于径向基过程神经网络的储层岩性识别.计算机系统应用,2017,26(3):271-274

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 28,2016
  • Revised:July 27,2016
  • Adopted:
  • Online: March 11,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063