Robot Path Planning Based on the Improved Artificial Bee Colony Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [15]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Path planning problems are known as one of the most important techniques used in robot navigation. This paper adopts an Improved Artificial Bee Colony (IABC) algorithm and combines with cubic Bezier curve to describe the path, which implements the path optimization. The standard artificial bee colony algorithm has shortcomings of falling into local optima and the convergence speed is slow in the later. To overcome these disadvantages, the proposed algorithm modifies the search methods of employed bees and onlooker bees. Compared with other algorithms, we gain the advantages and disadvantages of the different algorithms in path optimization. The experimental results demonstrate that the IABC algorithm has better search performance in path optimization and is able to get a shorter path.

    Reference
    1 蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法.北京:科学出版社,2009.
    2 Gong DW, Lu L, Li M. Robot path planning in uncertain environments based on particle swarm optimization. IEEE Congress on Evolutionary Computation. 2009. 2127-2134.
    3 刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述.中国工程科学,2006,8(1):85-94.
    4 Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization:Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 37:459-471.
    5 高卫峰,刘三阳,黄玲玲.受启发的人工蜂群算法在全局优化问题中的应用.电子学报,2012,40(12):2396-2403.
    6 Zhu GP, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 2010, 217:3166-3173.
    7 杭后俊,李汪根.有理三次Bezier曲线表示圆弧的一种实用方法.计算机工程与应用,2012,48(6):185-189.
    8 Ho YJ, Liu JS. Collision-free curvature-bounded smooth path planning using composite Bezier Curve based on voronoi diagram. Proc. of IEEE International Symposium on Computational Intelligence in Robotics and Automation. Daejeon. 2009. 463-468.
    9 刘会刚,秦国亮.一种基于Bezier曲线的军事箭标实现.四川兵工学报,2009,30(2):67-68.
    10 Gao S, Zhang ZY, Cao CG. Particle swarm algorithm for the shortest bezier curve. International Workshop on Intelligent Systems and Applications. 2009. 1-4.
    11 Liang JJ, Song H, Qu BY. Path planning based on dynamic multi-swarm particle swarm optimizer with crossover. International Conference on Intelligent Computing. Springer Berlin Heidelberg. 2012. 159-166.
    12 李海生.一类基于蜜蜂采集模型的智能算法.计算机与现代化,2010,(1):7-11.
    13 银建霞.人工蜂群算法的研究及其应用[学位论文].西安:西安电子科技大学,2012.
    14 Kennedy J, Eberhart RC. Particle swarm optimization. Proc. of IEEE International Conference on Neural Networks. Perth. 1995. (4):1942-1948.
    15 刘源,王佩雪,廖雷,王海泉.基于改进蜂群算法的倒立摆控制器优化设计.计算机测量与控制,2014,22(9):2820-2825.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王东云,徐艳平,瞿博阳.基于改进蜂群算法的机器人路径规划.计算机系统应用,2017,26(2):145-150

Copy
Share
Article Metrics
  • Abstract:1379
  • PDF: 2397
  • HTML: 0
  • Cited by: 0
History
  • Received:May 20,2016
  • Revised:July 07,2016
  • Online: February 15,2017
Article QR Code
You are the first992413Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063