Prediction of Parking Guidance Space Based on BP Neural Networks
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The problem of excavating knowledge from historical parking data and forecasting the number of parking spaces in a short period is studied.By analyzing the factors that affect parking space, we establish a BP neural network in which the network input variables are defined through the combination of time series.Then, a self-adaptive studying rate is used in different stage of training and the momentum terms are added to improve the convergence of the network.According to the real data collected from a large underground parking in town, the simulation and analysis are executed based on Matlab, which results in well-accepted prediction effect.The conclusion shows that the proposed method can improve the prediction accuracy compared with the traditional time series prediction method.

    Reference
    Related
    Cited by
Get Citation

高广银,丁勇,姜枫,李丛.基于BP神经网络的停车诱导泊位预测.计算机系统应用,2017,26(1):236-239

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 18,2016
  • Revised:May 19,2016
  • Adopted:
  • Online: January 14,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063