Improved Collaborative Filtering Algorithm of Similarity Integration
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the poor recommendation quality due to the data sparsity problem of traditional collaborative filtering recommendation, this paper puts forward an improved collaborative filtering algorithm.The improved algorithm proposes a collaborative filtering algorithm based on the similarity integration of item categories and user interests to make optimization on the similarity calculation.The algorithm does not simply concentrate on similarity calculation, but divides it into two aspects:users-item category interest similarity and users-item category rating similarity, which will finally be integrated with appropriate weights to get the final similarity.After a series of verification and comparison carried out on the MovieLens public data set, it is concluded that the improved algorithm based on data sparsity of collaborative filtering indeed plays a positive role in reducing the influence caused by data sparsity and improves the accuracy of recommendation.

    Reference
    Related
    Cited by
Get Citation

于世彩,谢颖华,王巧.协同过滤的相似度融合改进算法.计算机系统应用,2017,26(1):135-140

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 20,2016
  • Revised:June 01,2016
  • Adopted:
  • Online: January 14,2017
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063