Improved Bayes Algorithm for Filtering Spam E-Mail
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [15]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the continuous development of Internet, email has become a more popular forms of communication in people's life, and as well spam has become a major problem in E-mail users. Thus suppressing spam has become a rather urgent task. A minimum risk bayes algorithm based on the traditional bayesian is proposed on the basis of loss factor k, By adjusting the k value, the algorithm can improve the influence of spam false negative result, and reduce the loss of users at its best. At last, The results of the experiment indicates that the minimum risk bayes algorithm can make spam has a better filtering effect.

    Reference
    1 李翔鹰,叶枫.一种基于多贝叶斯算法的垃圾邮件过滤方法.计算机工程与应用,2006,42(31):114-116.
    2 王涛,裘国永,何聚厚.新的基于最小风险的贝叶斯邮件过滤模型.计算机应用研究,2008,25(4):1147-1149.
    3 王美珍,李芝棠,吴汉涛.改进的贝叶斯垃圾邮件过滤算法. 华中科技大学学报(自然科学版),2009,(8):27-30.
    4 邓慧.基于关联规则的垃圾邮件分类模型.计算机应用与软件,2015,32(8):320-323.
    5 Thiago SS,Walmir MC. A review of machine learning approaches to spam filtering. Expert Syst Appl. 2009, 36(7): 10206-22.
    6 薛松,张钟澍,殷知磊.贝叶斯算法在反垃圾邮件应用中的改进方案.成都信息工程学院学报,2009,24(4):351-355.
    7罗倩,秦玉平,王春立.反垃圾邮件技术综述.渤海大学学报(自然科学版),2008,29(4):385-389.
    8 王新艳.基于行为的垃圾邮件过滤技术研究.计算机光盘软件与应用,2015,18(3):176-177.
    9 宋文,张明新,彭太乐.图像型垃圾邮件过滤技术研究综述.计算机系统应用,2011,20(10):255-258.
    10 计宏.改进贝叶斯垃圾邮件过滤技术的研究.计算机测量与控制,2013,21(8);2181-2184.
    11 吴志军.基于内容过滤的反垃圾邮件系统研究.无线互联科技,2015,10(14):121-122.
    12 王忠建,张树舰,李颖.一种改进的基于贝叶斯的垃圾邮件过滤方法.黑龙江科技信息,2014,10(21);175-175.
    13 王红玲.改进的贝叶斯算法在垃圾邮件过滤中的应用.信息通信,2013,(9):85-86.
    14 Sun GL, Sun HY. Spam filtering: Online naive Bayes based on TONE.中兴通讯技术:英文版,2013,(2);51-54.
    15 王斌,潘文峰.基于内容的垃圾邮件过滤技术综述.中文信息学报,2005,19(5):1-10.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

赵敬慧,魏振钢.改进的贝叶斯垃圾邮件过滤算法.计算机系统应用,2016,25(10):137-140

Copy
Share
Article Metrics
  • Abstract:1386
  • PDF: 2580
  • HTML: 0
  • Cited by: 0
History
  • Received:January 20,2016
  • Revised:March 17,2016
  • Online: October 22,2016
Article QR Code
You are the first990506Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063