Time-Frequency Representation and Reconstruction Based on Compressive Sensing
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traditional time-frequency analysis is restricted by the Nyquist sampling theorem. As the amount of information increases, higher requirements are needed in sampling rate, transmission velocity, and storage space. Moreover, bilinear Wigner-Ville distribution is suffered from cross terms when processing multi-component signals. Using the kernel function based methods to suppress cross terms can decrease time-frequency concentration. In this paper, compressive sensing is combined with time-frequency analysis to solve the above problems. Under the framework of compressive sensing based time-frequency analysis, the restriction of Nyquist sampling theorem can be lessened, and the Wigner-Ville distribution can achieve suppressed cross terms with high time-frequency concentration. Simulations are provided for mono-component signal, multi-component signal, and bat sound signal, based on different window functions such as the rectangular window or the Gaussian window, to verify that the compressive sensing based time-frequency representation reconstruction is superior to the traditional reconstruction method. Moreover, we analyze the relationship between different sample regions and the performance of the reconstructed time-frequency representations, in terms of the mean-square-error (MSE) and time-frequency concentration measurement (CM).

    Reference
    Related
    Cited by
Get Citation

李秀梅,吕军.基于压缩感知的信号时频表示重构.计算机系统应用,2016,25(7):176-181

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 21,2015
  • Revised:December 20,2015
  • Adopted:
  • Online: July 21,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063