Application of Hybrid Computing Neural Network Model in Water Flooded Layer Recognition Based on Reverse Cloud Transformation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    So far, the existing method for automatically discriminating information is difficult to reflect the impact of mixing quantitative and qualitative indicators of the combination of the water layer recognition. Therefore, in order to improve the accuracy of determining flooded layer, this paper proposes neural network model to calculate quantitative and qualitative transformation hybrid cloud-based discrimination to achieve flooded layer. On the one hand, qualitative information is extracted logs by cloud model, to ensure the integrity and objectivity of the original data; on the other hand, the information in the qualitative concept forward through the normal cloud is converted to quantized transform numerical information, ensures the scientific data; the eventual establishment of correspondence between the characteristics of the system input and results. Experimental results show the high accuracy of the calculation method for water layer recognition neural network based on hybrid cloud transformation, it has the characteristics of fast, flooded layer identification is a more practical approach.

    Reference
    Related
    Cited by
Get Citation

刘凌云,许少华.基于云变换的混合计算模型在水淹层识别中的应用.计算机系统应用,2016,25(7):156-160

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 13,2016
  • Revised:May 12,2016
  • Adopted:
  • Online: July 21,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063