Improved Collaborative Filtering Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traditional elective system has structural deficiencies and defects. To avoid the fact that college students choose a course with blindness, therefore, with improved collaborative filtering algorithm, college students can get personalized elective course election. This paper first introduces two kinds of recommendation algorithms. Also the paper emphatically introduces recommendation algorithms based on collaborative filtering. It analyzes the advantages and disadvantages of the two algorithms. Finally, for data sparsity of collaborative filtering algorithm, it proposes an improved collaborative filtering algorithm, that adds factor in content-based collaborative filtering to solve this problem. Improved collaborative filtering algorithm avoids the traditional algorithms emerging data sparseness problem. Recommending appropriate courses for students on human-oriented, individual needs of students can be met.

    Reference
    Related
    Cited by
Get Citation

张亮,赵娜.改进的协同过滤推荐算法.计算机系统应用,2016,25(7):147-150

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 06,2015
  • Revised:December 10,2015
  • Adopted:
  • Online: July 21,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063