Project Cost Forecasting Based on Improved Particle Swarm Algorithm Optimizing Support Vector Machine
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Project cost forecasting is a key point in the research on project management, in view of support vector machine parameter optimization problem in project cost forecasting, a new project cost forecasting model (IPSO-SVM) is proposed, which is based on the improved particle swarm optimizing supporting vector machine. Firstly, project cost data is collected and processed, and then support vector machine is used to learn for training samples in which improved particle swarm algorithm is used to optimize kernel function parameters of support vector machine, At last, the simulation experiment is used to test the performance of project cost forecasting by using Matlab 2012. The experimental results show that IPSO-SVM can effectively improve the forecasting accuracy of project cost, and the forecasting results have some practical application values.

    Reference
    Related
    Cited by
Get Citation

李杰.改进粒子群算法优化支持向量机的工程造价预测.计算机系统应用,2016,25(6):202-206

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 19,2015
  • Revised:December 02,2015
  • Adopted:
  • Online: June 14,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063