Application of Combination Kernel Function SVM in Speech Recognition
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the problems of practical application, GMM - UBM is adopted as the background model when the training data is insufficient in speaker recognition system. EigenVoice is used as adaptation ways, then it structured a new combination kernel function combined with homogeneous polynomial kernel with good generalization ability and radial basis kernel function with good earning ability by linear weighted method to optimize model parameter. The optimal parameters of kernel function are determined through the multiple grid search method. DAG method is adopted to realize multivariate classification of SVM kernel function. Then the linear kernel, homogeneous polynomial kernel, radial basis kernel function and combination kernel function are evaluated in the experiments. The experimental results show that the identify performance of the combination kernel is more ideal than that of other kernel functions in the different classification strategy, different adaptive time, different signal-to-noise ratio and different number of speakers.

    Reference
    Related
    Cited by
Get Citation

吕洪艳,刘芳.组合核函数SVM在说话人识别中的应用.计算机系统应用,2016,25(5):168-172

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 15,2015
  • Revised:October 30,2015
  • Adopted:
  • Online: May 20,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063