Method of Human Fall Detection
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As the problem of population aging is becoming more and more serious, a method of human fall detection based on wearable device is proposed to solve the social problem that the elderly are prone to fall. Different from the majority of fall detection methods which detect fall events after falling to the ground, the features of acceleration and angle are considered and support vector machine (SVM) is used as the classification algorithm to detect fall events before falling to the ground. The experiment results show that the fall event is recognized with a 99.2% recognition rate and the recognition rate of the activity of daily living is 96%. The average lead-time is 273ms.

    Reference
    Related
    Cited by
Get Citation

茅莉磊,高强.一种人体跌倒检测方法.计算机系统应用,2016,25(5):142-146

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 04,2015
  • Revised:October 19,2015
  • Adopted:
  • Online: May 20,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063