Data Mining Method for Public Buildings Energy Consumption Based on Hadoop
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The utilization of building energy consumption data is still inefficient. According to this problem, in this paper, a new method based on Hadoop for data mining of public buildings energy consumption combining with building information is proposed. The paper designs the data mining system of public building energy consumption based on Hadoop, and performs designs and illustrations to the basic framework and functional modules. Apriori algorithm and C4.5 algorithm are implemented distributively using MapReduce programming model. The paper takes 100 office buildings in Shandong Province as examples to analyse the data of air conditioning system energy consumption. The experimental conclusions are the influence rules of 6 kinds of building information on air conditioning system energy consumption. Moreover, the experiment obtains the decision tree of air conditioning system energy consumption. According to the decision tree, we can distinguish the energy consumption level of air conditioning system, and offer targeted advice on energy saving renovation of sample buildings.

    Reference
    Related
    Cited by
Get Citation

王磊,张永坚,贾继鹏,牛晓光,聂昌龙.基于Hadoop的公共建筑能耗数据挖掘方法.计算机系统应用,2016,25(3):34-42

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 04,2015
  • Revised:August 31,2015
  • Adopted:
  • Online: March 17,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063