Multiple Factors Addictive Model for Mid-Term Electric Load Forecasting
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Accuracy forecasting of electric load is important for power system to make plan. A Multiple Factors Addictive(MFA) model is proposed to predict mid-term electric load based on Europe(EUNITE) competition dataset and North American electric dataset. Firstly, MFA considers factors such as temperature, holiday, and week separately to fit functions for electric loads. And then all these fitted functions are added together to a unified function, which is used to make prediction of the electric load. Seven other state-of-art algorithms which are popular in the field are also used to make forecasting. The performances of prediction models are evaluated by using 6 different metrics. Compared with 7 other kinds of different models prediction results, MFA has the advantages of more accurate forecasting performance and faster operational speed, and is simple and easy to understand.

    Reference
    Related
    Cited by
Get Citation

翁金芳,黄伟,江育娥,林劼.基于多因素加法模型的中期电力负荷预测.计算机系统应用,2016,25(3):14-20

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 07,2015
  • Revised:September 24,2015
  • Adopted:
  • Online: March 17,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063