Solving Circle Permutation Problem by Particle Swarm Optimization Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    In view of the existing algorithms are of long searching time and easily to prematurely converge to the optimal solution, this paper proposes a method for solving circle permutation problem using particle swarm optimization algorithm. First of all, based on the analyzing of relationship between circular permutation problem and the traveling salesman problem, circular permutation problem is translated into traveling salesman problem and accordingly, a corresponding combinatorial optimization problem is obtained. Then, the problem is solved by particle swarm optimization algorithm. Thirdly, in order to further improve the precision of the algorithm, this paper proposes a scheme based on a hybrid particle swarm optimization algorithm. Finally, in the simulation experiments, compared with the existing algorithm, the simulation results show that the proposed method is effective.

    Reference
    1 Applegate DL, Bixby RE, Chvatal V, et al. The Traveling Salesman Problem:A Computational Study. Princeton:Princeton University Press, 2011.
    2 麻存瑞,马昌喜.不确定旅行商问题的鲁棒模型与算法.计算机应用,2014,34(7):2090-2092.
    3 王庆,刘学鹏.基于流水算法的旅行商问题求解.预测,2014,33(1):65-69.
    4 杨金勇,宋海洲.圆排列包装问题最优解解析.华侨大学学报,2013,34(2):221-224.
    5 杨巍,刘占良.农机作业路径优化的研究-基于旅行商问题新算法.农机化研究,2014,36(6):54-57.
    6 刘明,张培勇.求解多旅行商问题的新混合遗传算法-以应急物资为例.系统管理学报,2014,23(2):247-254.
    7 Kennedy JF, Eberhart RC. Particle swarm optimization. Proc. of IEEE International Conference on Neural Networks. Perth, Australia. 1995. 1942-1948
    8 纪震,廖惠连,吴青华.粒子群优化算法及应用.北京:科学出版社,2009.
    9 Yan ZP, Deng C, Zhou JJ, Chi DN. A novel two-subpopulation particle swam optimization. Proc. of 10th Intelligent Control and Automation. Beijing, China. 2012. 4113-4117.
    10 Muruganandham A, Wahida Banu Dr RSD. Adaptive fractal image compression using PSO. Procedia Computer Science, 2010, 2:338-344.
    11 Ding W. A new method for image noise removal using chaos PSO and nonlinear ICA. Procedia Engineering, 2011, 24:111-115.
    12 Yu ZF, Li JW, Liu K. Radar emitter recognition based on PSO-BP network. AASRI Procedia, 2012, 1:213-219.
    13 Hu Y, Wang XH, PSO-based energy-balanced double cluster-heads clustering routing for wireless sensor networks. Procedia Engineering, 2011, 15:3073-3077.
    14 刘俊杰,巴海涛.基于粒子群优化的观测站部署算法.指挥控制与仿真,2014,36(3):40-43.
    15 史峰,王辉,郁磊,胡斐.智能算法30个案例分析.北京:北京航空航天大学出版社,2011.
    16 高尚,杨静宇,吴小俊,等.圆排列问题的蚁群模拟退火算法.系统工程理论与实践,2004,8(8):102-106.
    17 沈佳杰,江红,王肃.基于多点速度向量的多目标粒子群算法改进.计算机工程与应用,2015,51(2):46-56.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

徐小平,朱秋秋,邰会强.利用粒子群优化算法求解圆排列问题.计算机系统应用,2016,25(2):152-156

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 21,2015
  • Revised:June 23,2015
  • Online: February 23,2016
Article QR Code
You are the first991251Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063