MPCA Online Monitoring Based on Transfer Entropy for Batch Process
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The traditional statistical analysis methods ignore the relations between variables. Transfer entropy could express relations between variables effectively. So this paper proposes an MPCA online monitoring method based on entropy transfer for batch process. The transfer entropy is adopted to describe the complex relations between process variables. The non-parametric kernel density estimation method which does not depend on the prior distribution of data is utilized to calculate transfer entropy to deal with the non-Gauss distribution of the process data. By constructing the transfer entropy matrix combined with the sliding window to achieve the expression of dynamic information transfer between process variables, the MPCA model is then established based on these matrices for detecting faults of batch process. The simulation results show that, compared with the traditional MSPC method, the proposed method can timely identify the faults with better accuracy.

    Reference
    Related
    Cited by
Get Citation

赵化良.基于传递熵的MPCA间歇过程监测方法.计算机系统应用,2016,25(2):146-151

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 20,2015
  • Revised:July 02,2015
  • Adopted:
  • Online: February 23,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063