Incremental Learning Method of Dynamic Confidence Level and Sequence Selectable
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Under the condition of insufficiency of the training sets, Bayesian will easily make the classification of the new incremental and unlabeled training texts incorrectly. If these incorrectly labeled texts are added to the Bayesian classifier early, it will reduce the performance of Bayesian classifier. In addition, incremental learning with fixed confidence level parameter will cause low learning efficiency and instable generalization ability. In order to solve the above problems, this paper proposes an incremental learning method of dynamic confidence level and sequence selectable. Firstly, the new incremental training subsets are made up of these texts which are classified by current Bayesian classifier correctly. Secondly, it uses confidence level to dynamically monitor the performance of classifier, and then chooses texts from the new incremental training subsets. Finally, strengthen the positive impact of the more mature data, weaken the negative impact of the noise data, and complete the text classification of the test sets by choosing reasonable learning sequence. The experimental results show that the classification efficiency and precision are both advanced by using the method this paper proposes.

    Reference
    Related
    Cited by
Get Citation

李念,廖闻剑,彭艳兵.动态置信度的序列选择增量学习方法.计算机系统应用,2016,25(2):135-140

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 20,2015
  • Revised:June 15,2015
  • Adopted:
  • Online: February 23,2016
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063