High Utility Sequential Pattern Mining Algorithm Based on MapReduce
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Because of the rapid growth of data, the high utility sequential pattern mining algorithms' efficiency decreases seriously. In view of this, we propose a high utility sequential pattern mining algorithm based on MapReduce, namely HusMaR. This algorithm is based on MapReduce, which using the utility matrix to generate candidate efficiently, random mapping strategy to balance of computing resources and field-based pruning strategy to prevent an explosion. Experimental results show that in the large scale of data, the algorithm achieves a high parallel efficiency.

    Reference
    Related
    Cited by
Get Citation

程思远,马超,李聪聪.基于MapReduce的高效用序列模式挖掘算法.计算机系统应用,2015,24(12):228-232

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 07,2015
  • Revised:May 12,2015
  • Adopted:
  • Online: December 04,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063