Hybrid Particle Swarm Algorithm for Multi-Objective Optimization Based on Decomposition
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To deal with the problems of the way for selecting the global best position and reserve the diversity, a multi-objective particle swarm optimization algorithm based on decomposition and crowding distance was proposed. We introduced the Tchebycheff decompostion mechnisam and choose the best solution which comes form the neighbour weight vectors to be this particle's global best solution. To confine the flying of the particle,this paper introduced a new speed restriction factor. Comparing with three state-of-the-art multi-objective optimizers on ten test Problems, Smoeadpso outperforms the other algorithms as regards the coverage and approximation to the real pareto front.Meanwhile, the uniformity of the solution set to the 3 objective problems performs better than other particle algorithms.

    Reference
    Related
    Cited by
Get Citation

白猛,严宣辉,吴坤安,陈振兴.混合分解的多目标粒子群优化算法.计算机系统应用,2015,24(12):215-222

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 09,2015
  • Revised:May 18,2015
  • Adopted:
  • Online: December 04,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063