Novel and Efficient Moving Target Detection Method
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    A novel and efficient moving target detection method is proposed. The method by improving the seven-frame difference and background subtraction to eliminate the moving object detection of "empty" and false targets. Through the optical flow computation model for the weight function and the introduction of universal dynamic image model to establish a new optical flow constraints, it can solve common optical flow field calculation time-consuming and the unestablished problem caused by brightness changes of constraint equation, and also obtain accurate information campaign; Finally, threshold segmentation and morphological processing is completed to extract the target. Analysis indicate that the proposed method can detect and segment the moving target accurately and fastly.

    Reference
    1徐晶,方明,杨华民.计算机视觉中运动检测与跟踪.北京:国防工业出版社,2012.
    2 Cheng L,Gong ML, Schuurmans D, et al. Real-time discriminative background subtraction.IEEE Trans. on Image Processing, 2011,20(5):1401-1414.
    3杜向龙,伍健荣,邢涛.一种改进的基于背景抽取的运动目标检测算法.计算机测量与控制,2011,19(11):2665-2667.
    4 Alvar M, Sanchez A, Arranz A. Fast background subtraction using static and dynamic gates. Artificial Intelligence Review, 2014,41(1):113-128.
    5 Mitra B. On shadow elimination after moving region segmentation based on different threshold selection strategies. Optics and Lasers in Engineering, 2007, 45(11):1088-1093.
    6嵇存美,陈伟.一种嵌入式环境下的实时人脸跟踪方法.计算机应用与软件,2011,28(4):143-145.
    7施家栋,王建中,王红茹.基于光流的人体运动实时检测方法.北京理工大学学报,2008,28(9):794-797.
    8 Stojanovic I, Kard WC. Imaging of moving target multi-static SAR using an over complete dictionary. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1):164-176.
    9 Yue M, Bajic IV, Saeedi PS. Moving region segmentation from compressed video using global motion estimation and markov random fields. IEEE Trans. on Multimedia, 2011, 13(3):421-431.
    10贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述.自动化学报,2007,33(1):84290.
    11 Koguta G, Drymona L, Everetta H R. Target detection, acquisition, and prosecution fro manun manned ground vehicle. Unmanned Ground Vehicle Technology VⅡ, Proc. of SPIE. Orlando, FL, USA, 2005:5602568.
    12 Hu HX, Tan TN. A survey on visual surveillance of object motion and behaviors. IEEE Trans. on Systems, Man, and Cybernetics-part C:Applications and Reviews, 2004, 34(3):334-352.
    13 Nguyen TD, Lee G. Tensor voting based outlier removal for global motion estimation. International Journal of Innovative Computing, Information and Control, 2013, 9(1):179-190.
    14 张小建,徐慧.基于视频处理的运动车辆检测算法的研究.液晶与显示,2012,1(27):108-113.
    15刘翔.基于视频的运动目标检测与跟踪算法研究与应用[学位论文].武汉:武汉科技大学,2009.
    16 陈凤东,洪炳镕.基于动态阈值背景减除算法的目标检测方法.哈尔滨工业大学学报,2005,37(3):883-)884.
    17 Magee D. Tracking multiple vehicle using foreground back-ground and motion models. Image and Vision Computing, 2004, 22(2):143-145.
    18张铮,徐超,任淑霞.数字图像处理与机器视觉.北京:人民邮电出版社,2014.
    19 Barron JL, Fleet DJ, Beauchemin S. Performance of optical flow techniques. Internaitonal Journal of Computer Vision, 1994, 12(1):43-77.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王红茹,季鸣.一种新型的实效运动目标检测方法.计算机系统应用,2015,24(12):208-214

Copy
Share
Article Metrics
  • Abstract:1448
  • PDF: 2328
  • HTML: 0
  • Cited by: 0
History
  • Received:April 09,2015
  • Revised:May 07,2015
  • Online: December 04,2015
Article QR Code
You are the first990837Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063