Adaptive Extended Kalman Filter in the Application of the Mobile Robot Localization
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Concerning the error accumulation problem in mobile robot localization, a adaptive extended Kalman filter (AEKF) algorithm is presented. The extended Kalman filter and adaptive Kalman filter algorithms are analyzed. AEKF use the Taylor series in sampling time and the Sage-Husa time-varying noise estimator to estimate observation noise in real time, it overcomes the linearization error and enhance the environmental adaptability. Meanwhile, the AEKF convergence and complexity of operation are analyzed and combined with experiments show that AEKF has good comprehensive performance in terms of speed and precision. Finally, the effect of robot localization completed by two kinds of algorithm is analyzed and the error comparison by experiment is completed. The results indicate AEKF has better performance on localization.

    Reference
    Related
    Cited by
Get Citation

孟祥萍,张本法,苑全德.自适应扩展卡尔曼滤波器在移动机器人定位中的应用.计算机系统应用,2015,24(12):176-181

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 03,2015
  • Revised:May 15,2015
  • Adopted:
  • Online: December 04,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063